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Abstract: Species and phylogenetic lineages have evolved to differ in the way that they acquire
and deploy resources, with consequences for their physiological, chemical and structural attributes,
many of which can be detected using spectral reflectance form leaves. Recent technological advances
for assessing optical properties of plants offer opportunities to detect functional traits of organisms
and differentiate levels of biological organization across the tree of life. Here, we connect leaf-level
full range spectral data (400–2400 nm) of leaves to the hierarchical organization of plant diversity
within the oak genus (Quercus) using field and greenhouse experiments in which environmental
factors and plant age are controlled. We show that spectral data significantly differentiate populations
within a species and that spectral similarity is significantly associated with phylogenetic similarity
among species. We further show that hyperspectral information allows more accurate classification
of taxa than spectrally-derived traits, which by definition are of lower dimensionality. Finally, model
accuracy increases at higher levels in the hierarchical organization of plant diversity, such that we are
able to better distinguish clades than species or populations. This pattern supports an evolutionary
explanation for the degree of optical differentiation among plants and demonstrates potential for
remote detection of genetic and phylogenetic diversity.

Keywords: hyperspectral data; leaf functional traits; hierarchical organization of plant
diversity; evolution; tree of life; populations; genetic variation; PLS-DA; phylogenetic signal;
optical classification

1. Introduction

Biodiversity loss is a major threat to our planetary life support systems [1–3]. Gaps in documenting
and monitoring biodiversity are largest in areas where biodiversity is greatest and where existing
biodiversity may be most threatened [4], highlighting the need for globally consistent and continuous
approaches for assessing changes in biodiversity [5]. Using remote sensing to monitor changes
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in biodiversity, including in remote and logistically challenging ecosystems around the Earth, is
emerging as a promising approach to contribute to an integrated global biodiversity monitoring
system [5–8]. Recent and proposed airborne and satellite platforms equipped with hyperspectral
imaging technology [5,9] increase the urgency to understand how we can use these tools effectively to
monitor biological variation globally across spatial, temporal and biological scales.

Plant species and lineages have evolved different functional mechanisms to acquire, harness
and deploy resources [10–13]. Differences among plants in their functional attributes have
consequences for their spectral properties, given that the chemical, morphological, physiological
and structural properties of leaves influence the way electromagnetic energy is reflected, transmitted
and absorbed [14–19]. A range of functional traits can and have been frequently assessed using
hyperspectral remote sensing methods [8,17,20] and considerable progress has been made in linking
remote sensing data to biodiversity [14,21,22] based on trait variation among taxa. Critical to these
efforts are statistical advances that have been successfully applied to differentiate taxa in specific
regions and systems [23–25].

Biological diversity occurs at many organizational levels: within individuals, among individuals
within populations, among populations within species, among species within lineages (clades),
and among lineages at increasing hierarchical levels (Figure 1). Variation in observable traits
(i.e., the phenotype) arises from both evolutionarily derived genetic variation and environmental
factors. Generally, variation among individuals within populations or species is less than the variation
among species, e.g., [26,27]. Likewise, species within a particular clade tend to show greater similarity
(and less variation) than is found among species from distantly related clades, e.g., [28,29]. Phenotypic
similarity of organisms under common conditions often parallels the extent of shared evolutionary
history among organisms [30], which can be modeled simply in the form of a Brownian motion process
of evolution [31] (Figure 1). With random changes in the direction of trait values at each time-step, the
variation among taxa is directly proportional to the time since divergence from a common ancestor.
Despite the generality of this pattern, convergent and divergent evolution, respectively, can cause
distantly related species to have more similar form and function, and close relatives to be more distinct,
than expected under a Brownian motion model of evolution [32,33].
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Figure 1. (A) Hierarchical structure of biological diversity. Individuals (green) are nested within 
populations (red), which are nested within species (blue), which, in turn, are nested within 
increasingly inclusive clades (purple). The phylogenetic representation of diversity is shown along 
the same vertical time axis in A as in B, with all extant individuals have evolved from an original 
common ancestor; (B) A simple simulation of the process by which organisms reproduce over time 
giving rise to changing trait values with each new generation. If trait evolution is simulated as a 
random walk through time (or Brownian motion process), the degree of trait divergence between 
biological taxa is expected to be proportional to the amount of time they have diverged from a 
common ancestor. As a consequence, distantly related taxa are expected to be phenotypically more 

Figure 1. (A) Hierarchical structure of biological diversity. Individuals (green) are nested within
populations (red), which are nested within species (blue), which, in turn, are nested within increasingly
inclusive clades (purple). The phylogenetic representation of diversity is shown along the same vertical
time axis in A as in B, with all extant individuals have evolved from an original common ancestor;
(B) A simple simulation of the process by which organisms reproduce over time giving rise to changing
trait values with each new generation. If trait evolution is simulated as a random walk through time
(or Brownian motion process), the degree of trait divergence between biological taxa is expected to be
proportional to the amount of time they have diverged from a common ancestor. As a consequence,
distantly related taxa are expected to be phenotypically more dissimilar. Spectral information could be
considered another form of trait (on the y-axis), becoming increasingly dissimilar among groups with
greater evolutionary distance.
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Spectra are a phenotypic expression of the aggregate signals of chemical and structural
composition of leaves that have evolved through time. As a consequence, spectra may be hypothesized
to reveal evolutionary relatedness among organisms both within and across lineages. Therefore,
we might reasonably expect that spectral variation will provide greater ability to differentiate taxa
at deeper levels of the phylogeny and with increasing phylogenetic distance, such that clades can
be distinguished more accurately than species or populations. Few attempts have been made to
directly link high-dimensional spectral data to phylogenetic information. The attempts that have been
published tend to rely on taxonomic hierarchies rather than highly resolved phylogenetic relationships,
e.g., [14,21], even though these data are becoming increasingly available (for example, the recent
32,223-species dated tree, [34]).

To the extent that genetically-derived variation dominates plastic (environmentally-derived)
variation, there is promise in consistent association of spectra with biological organisms at some
hierarchical level in the tree of life. Variation in leaf-level properties due to environmental drivers
poses a key challenge to differentiating taxa at any level using spectral information. Other factors
include: (1) remote sensing considerations such as spatial and spectral resolution, sun angle and
atmospheric effects; (2) within and between pixel variation due to species composition, canopy
structure (including density, cover, vegetation size/age, etc.); and (3) convergence in chemical and
functional properties among taxa. Here we test the extent to which spectral information can be used to
differentiate genotypes and closely related species, while controlling for other sources of variation.
We focus exclusively on leaf-level spectral variation within and among species within a single lineage,
allowing us to remove the complications associated with spatial resolution, atmospheric and canopy
effects, size and age variation, and environmental variation. We test the extent to which spectra can be
associated with evolutionary changes at both intra- and interspecific biological scales.

Specifically, we ask:

1. Do closely related species tend to have similar spectral profiles?
2. Can leaf spectra be used to detect variation: (i) among populations within a single species;

(ii) among species within clades; and (iii) among clades? Where in the biological hierarchy are
spectral signals best able to differentiate taxa?

3. Does statistical comparison of high dimensional spectral data allow greater accuracy in detection
of phylogenetic differences among taxa than estimates of functional traits derived from spectra?

We use two experimental systems. The first is a field experiment in Honduras in which four
populations of a single oak species (Quercus oleoides (Q. oleoides)) were grown from seed collected in
wild populations across Central America. The second is a system of 28 closely related species within a
single phylogenetic lineage (the oaks), in which leaf-level spectra were measured on saplings growing
in a controlled greenhouse experiment.

We used partial least squares discriminant analysis (PLS-DA) to test how well plant spectra
or, alternatively, spectra-derived traits can statistically distinguish biological taxa at three different
evolutionary scales in the hierarchy of plant diversity: lineages, species and populations. We first
allowed the PLS-DA to use full spectral data to describe the predictive power for each evolutionary unit,
controlling the number of latent variables included in the model. We then used a suite of nine functional
traits predicted from spectral data, including structural components (e.g., fiber content and LMA) and
chemical components (e.g., chlorophyll and nitrogen concentrations), as input for the PLS-DA model.
Using both approaches allowed us to compare the consequences of using dimensional reduction to
derived traits, relative to information provided by the full spectrum in a predictive framework. On
the one hand, full spectral data may prevent loss of information that could be genetically meaningful,
providing information about a comprehensive ensemble of traits, including those that we may not
have measured or we may not yet know are important. On the other hand, predicted traits may be
better associated with the evolutionary processes underlying differentiation and speciation and thus
allow us to eliminate regions of the spectra that are not relevant to differentiating taxa.
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2. Materials and Methods

2.1. Experimental System 1: Population-Level Variation within a Single Species (Tropical Live Oak,
Quercus oleoides) in a Field Experiment in Zamorano, Honduras

In the first experiment, we examine spectral variation among populations within a single species
of oak. We measured spectra of tropical live oak saplings (Quercus oleoides) from five populations
across the species range (Mexico, Belize, Honduras, and two populations from a high and a low
elevation region in Costa Rica) grown in a common garden at Zamorano University, Honduras.
Populations experience contrasting climatic regimes and biotic factors in their sites of origin and
may thus have adapted to their contrasting local conditions. Moreover, gene flow is limited among
populations given that they are each several hundred kilometers apart, allowing for genetic drift and
phenotypic divergence among them [35,36]. As a consequence, we expected that populations might be
phenotypically differentiated. Seeds were originally collected in 2009 and 2010, then germinated in a
nursery and outplanted in a common garden in a randomized complete block design with maternal
lineage represented evenly among blocks and individuals randomized within blocks. Half of the
blocks, randomized spatially, were watered up to a total of 25 mm per week, a typical rainfall amount
found during the dry season in wetter regions of the species range [36,37]. The remaining blocks were
not watered. All blocks were weeded biweekly.

In March 2014, when plants were 2 or 3 years of age, leaf-level spectra were collected on fully
mature, recently expanded leaves. Leaf reflectance was measured using a high-spectral-resolution
FieldSpec 3 Full-Range (350–2500 nm) spectroradiometer (Analytical Spectral Devices, Boulder, CO,
USA). All measurements were taken from the leaf adaxial surface using a leaf-clip assembly that
was attached to a plant probe having an internal, calibrated light source. Reflectance was measured
on three different areas per leaf, with five spectra measured per area on three leaves from each
individual between approximately 10 am and 2 pm. A total of 486 watered individuals and 569 ambient
individuals were measured from the five populations. Plant water potential was measured at predawn
(PDψ) using a Scholander pressure chamber (Soil Moisture Equipment Corp., Santa Barbara, CA, USA).
For a total of 48 subsampled individuals, ambient plants had mean PDψ = ´1.53 MPa, ˘0.125 MPa SE,
while well-watered plants had a mean PDψ = ´0.94 MPa ˘0.106 MPa SE, demonstrating a clear
difference in water status among the treatments. We focused on plants measured under watered
conditions for this study, but best comparison to Experiment 2 (below). However, we also examined
the extent to which populations could be discriminated under ambient (greater water stress) conditions
or when individuals from both treatments were combined.

Nuclear microsatellite markers collected from individuals across the range, reported in a previous
study [36], were used to examine neutral genetic variation among regions (Figure 2A). These genetic
patterns are of interest in comparison to spectral or trait differences among populations.

Foliar carbon (C), nitrogen (N), fiber, cellulose and lignin concentrations (% dry mass) and leaf
mass per area, (LMA, g¨ m´2) were generated from calibrations from Serbin [38]. Foliar water content
was determined using the normalized differential water index (NDWI) and calculated as the relative
difference between reflectance at wavelengths 857 and 1241 nm [39]. Foliar chlorophyll content (g¨ m´2)
was calculated as the relative difference between reflectance at wavelengths 750 and 705 nm [40]. The
photochemical reflective index (PRI), an index of photosynthetic light-use efficiency [41], was calculated
as the relative difference between reflectance at wavelengths 531 and 570 nm. Trait estimates and
indices were calculated using the averaged spectra from each leaf then further averaged to provide
trait information for each plant.
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related to Costa Rica. Belize is similar to Mexico and Honduras; (B) Comparison of spectra from 

saplings from four populations grown in a common garden in Honduras; shown are the means for 

each wavelength per population. Panels (C–F) present the % reflectance means of each population 
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Figure 2. (A) Quercus oleoides nuclear DNA simple sequence repeats (SSRs) from seven chromosomes
group into distinct clusters, or ancestral groups, indicated by colors (from [36]). Four populations are
circled showing the locations where seeds were collected for the field experiment. The Costa Rica (CR)
populations are distinct from the other populations, although not with each other, and gene flow with
the Honduras (HN) population is apparent. The Mexico (MX) population is most distantly related to
Costa Rica. Belize is similar to Mexico and Honduras; (B) Comparison of spectra from saplings from
four populations grown in a common garden in Honduras; shown are the means for each wavelength
per population. Panels (C–F) present the % reflectance means of each population within the visible
(VIS), near infrared (NIR) and first and second spectral regions of the short-wave infrared (SWIR1 and
SWIR2) and show the mean, 50% and 95% quantiles.

2.2. Experimental System 2: Greenhouse Experiment with 28 Oak Species from a Range of Geographic Regions
and Climatic Zones across North and Central America Grown in a Controlled Environment

The second experiment examined leaf spectral variation in species from multiple clades within a
single genus (oaks). Leaf type (or habit) is a major life-history trait that differs among oak species, and
is associated with a suite of other functional traits, including leaf lifespan, LMA, leaf nutrient content,
photosynthetic rate and freezing tolerance [13,42,43]. Species can be categorized into three major leaf
types: (1) deciduous (leaves persist in the canopy only for the growing season); (2) brevi-deciduous
(old leaves are exchanged just before flushing annually with a brief period in which the tree has a
bare or incomplete canopy); or (3) evergreen (leaves are functional and green all year). Acorns were
collected in the fall of 2012 from the U.S. and Mexico from over 28 species and planted in February 2013
in a greenhouse at the University of Minnesota maintained at a constant growing season temperature
of 22–32 ˝C (8–16 ˝C in the winter). Each species included seeds collected from one to five populations.
Plants were transplanted twice; the final transplant was into 1.5 m deep pots. Plants were grown under
well-watered and low water conditions. Water potential differences in summer 2014 showed mean
PDψ of ´0.47 MPa ˘0.07 MPa SE for the well-watered treatment and ´0.88 MPa ˘0.09 MPa SE for
the low water treatment. In June of 2014, leaf-level reflectance spectra were collected on two different
areas per leaf, with three measurements per area and five spectra averaged per measurement, on
two leaves of approximately 7–14 individuals for each of 27 species in the well-watered treatment and
for 23 species in the low water treatment. Spectra were collected on fully mature, recently expanded
leaves and averaged across leaves from individuals per species for analyses (total sample size was
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306 individuals, well-watered; 204 individuals, low water). Trait estimates were calculated from the
spectra averaged at the leaf level, as in Experiment 1. We focus analyses on the well-watered plants,
which have a higher sample size, but also examine the low water individuals and conduct a combined
analysis to understand the impact of environmental variation on species detection accuracy, similar to
Experiment 1.

2.3. Phylogenetic Information

The phylogenetic data were contributed by the Oaks of the Americas project [44], which is
developing a fully resolved genus-level phylogeny using RADseq data. All vouchers are stored at the
University of Minnesota, the Morton Arboretum, and Duke University. Sequencing and analytical
procedures are described previously [44]. The Oaks of the Americas phylogeny was pruned to
include only the species included in the present study. The species represent all of the four major
clades within the American oaks, a monophyletic group of approximately 260 species [45]. From
the full genus, which includes approximately 400 species globally, the Asian cycle cup oaks (Quercus
subgenus Cyclobalanopsis) and the Mediterranean cerris group of oaks (Quercus section Cerris) are not
represented [46].

2.4. Statistical Analyses

We conducted principal coordinates (PCO) analysis on the spectral data using the vegan package
in R [47]. This method uses a distance or dissimilarity matrix and transforms a number of possibly
correlated variables into a smaller number of uncorrelated variables, or principal coordinates, reducing
the dimensionality of the data. We used the minimization of angular distance, which has advantages
for spectral data, but obtained very similar results for Bray–Curtis dissimilarities or Euclidean
distances. PCO was performed for individuals distinguished by (1) populations within Quercus oleoides;
(2) the 28 oak species within the genus; (3) the four clades represented within the genus; and
(4) the three leaf types (deciduous, brevi-deciduous and evergreen). For each principal component in
the PCO analysis for populations, we used ANOVA to test whether populations could be differentiated,
treating population as the main effect. Components that significantly differentiated populations could
then be identified and used in visualizing differences. We also used ANOVA to identify components
that were useful in differentiation leaf types.

We estimated the phylogenetic signal of the predicted traits and the first and second principal
coordinates of the spectral data using the K statistic [48] as implemented in the Phytools R package [49].
A K value of near 1 indicates that the trait variation is proportional to the time since divergence as
predicted by a Brownian motion (BM) model of evolution. A BM null model is derived by repeated
simulations of Brownian motion evolution. Observed K values less than the 95% distribution of
the simulated values indicate that traits are less divergent than expected by Brownian motion [48].
K values are also compared to a null distribution based on a white noise model in which trait values
are randomly permuted across the tips of the phylogeny. Significance is tested by comparing the
observed K statistic value to the distribution of K statistics estimated from both the white noise and
the Brownian motion null models. If observed K values are not different from random expectation
(white noise null model), they can be considered convergent or labile. If they are not different from
the BM null model, they can be considered conserved. Values greater than the 95% CI for the BM null
indicate very highly phylogenetically conserved traits. We chose PCO components with significant
phylogenetic signal to visualize differentiation of species and clades.

We then used partial least squares-discriminant analysis (PLS-DA) [50] to determine how well
biological units could be classified using either full-spectral data or foliar trait data measured
or predicted from spectra. PLS-DA is a statistical approach used with high dimensional data to
discriminate groups based on projecting latent variables through the response and predictor variables
to both reduce data dimensionality and maximize prediction accuracy. It is an appropriate method for
data in which predictor variables have a high degree of collinearity, and it is widely used in several
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areas including chemometrics [50–53], metabolomics [54] and functional genomics [55]. The PLS
model fits response variables that are indicators of groups of interest to the full spectrum. In this study,
full-spectrum data included 400–2400 nm (excluding regions of the spectrum, 350–399 and 2401–2500,
with higher noise) subsampled every 5 nm. Subsampling at smaller or large intervals (1, 2 or 10 nm)
gave indistinguishable results (results not shown). Trait data included foliar characteristics predicted
from spectra listed above. The analyses were applied by repeatedly (300 times) splitting observations
by groups evenly (50:50) into training (calibration) and testing (validation) sets. We used the number of
correct classifications both in the calibration and the validation sets across 300 iterations to evaluate the
accuracy of the tested model. The number of components to allow in the models that would give the
best fit to the data was determined by iteratively running the PLS-DA models with increasing numbers
of components (Figure S1) and was based on the highest kappa values returned for the validation
models. PLS-DA modeling was performed in the R packages caret and vegan.

3. Results

3.1. Detection of Population-Level Variation within a Single Species

In the first experimental system, we show that the four populations of Q. oleoides, which exhibit
differentiation based on molecular data (Figure 2A), also demonstrate considerable variation across the
major spectral regions (Figure 2B–F). Of the first 20 principal components in the principal coordinates
(PCO) analysis using multivariate spectral distance matrices, eight components (1, 2, 3, 5, 7, 13, 14, 19)
significantly differentiated populations (Table S1). A bivariate plot of aggregate means per population
for PC axes 1 and 2 shows separation between the two Costa Rican populations on the first axis, as
well as between the Honduras and Mexico + Belize populations (Figure 3A). The two Costa Rican
populations are separated from the other three populations on the second axis, consistent with the
differentiation between Costa Rica and the other populations revealed from the neutral genetic markers.
There was no clear separation between Belize and Mexico in either the spectral data (Figure 3A) or the
genetic data (pie charts in Figure 2A).

The analyses were repeated for the ambient (unwatered) plants growing under more severe
water stress. Populations were distinguished with approximately the same level of accuracy (mean
Kappa = 0.335, ˘0.03 SD for spectra and 0.226 ˘ 0.029 for traits) for the unwatered plants (Figure S2)
as for the watered plants (0.34 ˘ 0.037 for spectra and 0.226 ˘ 0.029 for traits; Table 1). We also
ran combined analyses with both watered and unwatered plants together. Again, the accuracy for
distinguishing the populations was similar, although slightly higher (mean Kappa = 0.4 ˘ 0.025 SD
for spectra and 0.27 ˘ 0.031 for traits), perhaps due to higher sample size (N = 1055). Interestingly,
the two water treatments, themselves, could be predicted with somewhat greater accuracy (mean
Kappa = 0.50 ˘ 0.034 SD for spectra) than the populations (Figure S2). However, the environmental
heterogeneity resulting from combining the watering treatments did not reduce accuracy in
detecting populations.

Table 1. Summary of the PLS-DA results.

Classification Unit
Spectra Traits

Kappa: Mean (SD) # Components Kappa: Mean (SD) # Components

Population 0.344 (0.042) 29 0.222 (0.033) 7
Species 0.61 (0.027) 60 0.271 (0.021) 8
Clade 0.813 (0.025) 35 0.516 (0.028) 5

Leaf type 0.365 (0.046) 44 0.13 (0.044) 8
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1 
 

 

 
 
  

Figure 3. (A) Bivariate plot of population means (˘1 SE) from a principal coordinates (PCO)
analysis PCO using leaf spectra from five populations of Quercus oleoides (BZ = Belize, MX = Mexico,
HN = Honduras, CR-SE = Costa Rica, Santa Elena, and CR-RI = Costa Rica, Rincon), showing the first
and second axes of variation. The first two components were significantly differentiated by population
(see Table S2); (B) PCO scores showing populations means (˘1 SE) for the first and fourth principal
components as black circles with 95% CI. These were the first two components that had significant
phylogenetic signal (see Table S2); (C) PCO scores for the first and fourth principal components shown
for the four higher order clades (live oaks, Virentes (V, green symbol); white oaks, section Quercus
(Q, blue symbol), red oaks, section Lobatae (L, red symbol), and golden cup oaks, section Protobalanus
(P, gold symbol)); (D) PCO scores for leaf type (evergreen (E), deciduous (D) or brevi-deciduous (BD)),
showing the first and fourth principle components, the first two components that were significantly
differentiated by leaf type (see Table S3).

3.2. Detection of Variation among Species at the Phylogenetic Level

At the phylogenetic scale, species were distinguished using spectra with better accuracy (mean
Kappa = 0.61, SD = 0.027) than populations. This was true for the well-watered plants (Table 1 and
Figures 3–5) as well as for the low-water plants (mean Kappa = 0.52, SD = 0.04; Figure S3); combining
the treatments again increased accuracy in classifying species (mean Kappa = 0.66, SD = 0.021; S3),
perhaps given the higher sample size (N = 510). Of the first 20 spectral principal coordinate scores for
species discrimination (well-watered plants, only), four (1, 4, 9, 15) show significant phylogenetic signal
(Table S3). Bivariate plots of aggregated species means (˘1 SD) for the first and fourth components
(Figure 3B), which both have significant K values, show that many but not all species are separated
from each other. However, when plotted in relation to the phylogeny (Figure 4A–C), visual inspection
reveals reasonably high fidelity to phylogenetic relationships, indicating phylogenetic signal. This
is confirmed by the high observed K statistic values relative to null models for the first and fourth
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principal coordinates of the leaf spectra (Figure 4D,E), indicating that, on average, closely related
species tend to have similar spectral profiles. Similarly, five of the traits (or trait indices) inferred from
spectra (N, C, fiber, lignin, and NDWI) show strong phylogenetic signal (Table S3) consistent with
Brownian motion evolution. 

2 

 

 Figure 4. (A) Molecular phylogeny of 28 oak species showing principal coordinate scores to the right
of each species. Leaf habit is indicated by letter codes and coloring of species names, as follows:
D = deciduous (red), E = evergreen (dark green), and BD = brevi-deciduous or semi-evergreen
(light green). The four recognized higher level clades are indicated with colored circles as follows: red,
red oaks (section Lobatae); blue, white oaks (section Quercus); green, live oaks (Virentes); and yellow,
golden cup oaks (Protobalanus). Species values for the first and fourth principal coordinate (PCO) axes
are shown to the right: PCO1 (B) and PCO4 (C). Positive PCO axis values are shown in dark gray,
negative in light gray. Distributions of observed values of Blomberg’s K statistic (red dashed lines) are
shown relative to a Brownian motion (BM) model of evolution (dark gray bars) and relative to a white
noise model in which phylogenetic relationships are completely randomized (light gray bars) for PCO1
(D) and PCO4 (E) species scores. Observed K values for the PCO1 and PCO4 scores are consistent with
a Brownian motion model of evolution and show higher phylogenetic conservatism than expected
based on random relationships.
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Figure 5. (A) Comparison of the distribution of Kappa scores for 300 iterations of the PLS-DA validation
model using predicted trait data (blue bars) or full spectral data (yellow bars); (B) Loadings by
wavelength for the first three components of the PLS-DA validation model using spectral data to
classify populations within a species. The absolute values of the loadings in each regions of the
spectra indicate the degree of information content in distinguishing oak species for a given component.
For all graphs in the middle and right columns, solid lines represent means for each component;
shaded areas represent the 5% and 95% quantiles; red = component 1, green = component 2, and blue =
component 3; (C) Loadings by trait for the first three components of the PLS-DA validation model to
classify populations using traits. Lines and shading are the same as in A; (D) Kappa score distributions
for the PLS-DA validation models for species classification using trait and full spectra data as in (B);
PLS-DA loadings to classify clades using spectra (E) or traits (F); (G) Kappa score distributions for the
PLS-DA validation models for clade classification using trait and full spectra data as in (A); PLS-DA
loadings to classify species using spectra (H) or (I) traits; (J) Kappa score distributions for the PLS-DA
validation models for leaf type classification as in (A); and PLS-DA loadings to classify leaf type using
spectra (K) or (L) traits.
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3.3. Comparison of Model Accuracy for Traits and Spectra across the Biological Hierarchy of Diversity

Multivariate PLS-DA models were applied to the full spectral data and to the derived trait data
(Figure 5A) to classify individuals to the five populations. Model results show higher kappa scores
using the full spectral data (0.342 ˘ 0.041 SD) compared to predicted trait values (0.225 ˘ 0.04 SD),
indicating that populations were statistically differentiated better using the full spectral profile
rather than traits. Likewise, full spectral data also classified species (kappa = 0.61 ˘ 0.0268), clades
(0.813 ˘ 0.0249) better than trait information (kappa = 0.271 ˘ 0.021 SD and 0.516 ˘ 0.028 SD for
species and clades, respectively). Leaf type, in which there are only a small number of categories (3),
was also better predicted by spectra (kappa = 0.365 ˘ 0.045 SD) than traits (kappa = 0.13 ˘ 0.044 SD).

Classification of clades shows higher accuracy (kappa = 0.813 ˘ 0.024 SD) for the spectral data
models than classification of species (kappa = 0.61 ˘ 0.027), which in turn shows higher classification
accuracy than populations (kappa = 0.344 ˘ 0.042 SD); the same pattern is true for traits (Table 1;
Figure 5A,D,G). The same pattern emerged for plants in the drought treatments and when data from
drought and watered treatments were combined (Figures S2 and S3). Full spectral data correctly
classified oak species with moderate accuracy (kappa = 0.61) while, models based on traits predicted
from spectra performed poorly (with kappa = 0.27 (0.021 SD) (Table 1)). However, phylogenetic
clades were much more accurately predicted than leaf type using either spectra or traits (Table 1).
Classification of clades using full spectra gave the highest accuracy of any of the models, and was
more reliable than classifying species or populations (Table 1, Figure 5).

3.4. Most Informative Regions of the Spectra and Traits

Coefficient loading values for each wavelength of the first three PLS components suggest that at
any hierarchical level of diversity, the visible, NIR and SWIR regions of the spectrum all contribute
to classification models (Figure 5B,E,H,K). Large coefficient loadings different than zero in either the
positive or negative direction indicate that a spectral band or trait contributes to classification of taxa.
In contrast to spectral regions, not all traits are informative for the first three components. At all
diversity levels, the most informative traits are LMA, fiber, lignin, and cellulose. Chlorophyll content,
%N and %C, PRI, associated with xanthophyll cycle pigments, and NDWI, associated with water
content, show very little contribution (Figure 5C,F,I,L). All regions of the spectrum were also important
in classifying leaf type. Again, LMA, fiber, lignin, and cellulose were the most informative traits in
classifying leaf type, consistent with the expect associations between these leaf attributes and the
degree of deciduousness or evergreenness [13,42].

4. Discussion

In this study, we link high dimensional leaf optical data with phylogenetic and genetic information
in experimental conditions where environmental variation and plant size and age are controlled.
We show that leaf spectral data show promise for classifying biological taxa at the population level
(Figures 2, 3A and 5A), species level (Figures 3B, 4, and 5D) and clade level (Figures 3C and 5G),
a critical step in remote sensing of biodiversity.

The PLS-DA approaches used in this study show great potential to distinguish populations,
species and clades within a single genus. An important result from this study is that we find much
higher accuracy in classifying biological taxa at all hierarchical levels (populations, species and
clades) using full-spectrum data than using traits. This is likely because spectra represent a large
ensemble of traits given the covariance between physical and chemical properties of leaves and their
spectral signatures and thus provide a more complete characterization of leaves than any individual
or groups of traits. We also show increasing accuracy in classification with increasing hierarchical
levels of biological organization. We find higher accuracy in predicting clades than species (Figure 5;
Experiment 2), and classification of species (Figure 5; Experiment 2) shows higher accuracy than
classification of populations within species (Figure 5; Experiment 1). These results are consistent with
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increasing classification accuracy at deeper phylogenetic levels, an expected result based on greater
time for divergence among more distantly related taxa (Figure 1). Further research is necessary to
understand how well this result can be generalized for other groups and the phylogenetic scales at
which the relationship holds. The greater accuracy of classifying clades than other biological units is
unlikely to be due to fewer classification categories. When we examine leaf types, an analysis that also
includes a small number of categories, we see much lower accuracy. Likewise, populations were less
accurately, classified, despite the fact that there were only 5 categories.

Although we focus on only one genus, these results demonstrate the potential contributions of
spectroscopy to understanding patterns of biodiversity. An important next step would be to test the
extent to which broader clades that originate deeper in the phylogeny can be distinguished spectrally
better than narrower clades, species, or populations within species, across the plant tree of life.

To the extent that biological taxa show evolutionary convergence in spectral information given
convergence in underlying traits, this increasing classification accuracy deeper in the phylogeny may
not hold. For example, evergreen species with thick and long-lived leaves from very different lineages
may appear spectrally more similar than more closely related species with contrasting leaf habits and
morphology. From the current study, which was conducted within a single genus, it is not possible to
assess the phylogenetic level at which spectral information is most informative across a broad range
of lineages.

Full-spectrum information provides more power to differentiate taxa than suites of functional
traits derived from those spectra. This suggests that there is important classification information
in regions of the spectra that are not captured by the relatively small number of traits we used
or are not directly linked to functional attributes currently used in this study. This reasoning
is supported by the indication that nearly all spectral regions are informative at every biological
level (Figure 5). We were only able to derive a small subset of traits from the spectra; yet spectral
variation is almost certainly related to additional traits for which calibration equations do not yet
exist. We compared predictions based on nine known traits versus predictions from 2001 reflectance
“traits”. This difference in available information points to the power of spectra, but also to our lack
of comprehensive knowledge of all the factors (“traits”) that cause the variation in spectra. It may
also be that functional traits are more convergent than many of the structural or other components
of leaves that contribute to the full spectra. In a separate study, a suite of functional traits including
gas exchange (maximum photosynthesis and stomatal conductance rates), photochemical efficiency
(Fv/Fm), non-photochemical quenching, and specific leaf area did not differ among populations [56].
That full-spectrum information is capable of differentiating these populations makes spectral data
relevant to high throughput genotyping approaches.

Spectra showed consistent accuracy in classifying taxa in both watered and drought conditions
(Figures S2 and S3). Combining individuals from different treatments did not decrease accuracy but
actually increased it, probably as a consequence of higher sample sizes. This result was consistent
across both experiments, indicating that genetically-based phenotypic differences among populations,
species and clades can be differentiated even when environmental heterogeneity is present.

Ultimately, spectral variation among taxa is generated from phenotypic variation and does not
directly measure the underlying genetic or phylogenetic relationships among species. However,
spectra represent an aggregated measure of all phenotypic components that influence leaf spectral
profiles. Spectral data thus represent a measure of the integrated phenotype of a leaf or of an organism
and these data suggest harnessing full-spectrum information to detect taxonomic variation may inform
our capacity to detect changes in biodiversity. Spectra may represent a more powerful approach than
direct measurements of leaf-level traits (i.e., by destructive sampling and/or chemistry) simply because
spectra contain such rich information about leaves and the large range of factors that affect their
reflectance. That said, while using full spectra provides more power to distinguish taxa, combining
this classification approach with trait information may allow for a deeper understanding of how taxa
differ functionally.
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Caveats and Limits

We focused on leaf spectra collected in experimental conditions that minimized environmental
and ontogenetic variation. Remote sensing of natural systems from air- or spacecraft poses significant
challenges. For instance, if it is necessary to sense biological taxa at the scale of individual plants,
then spatial resolution becomes a critical consideration. Imaging methods are sensitive to canopy
structure, which is not problematic when canopy structure reveals taxonomic differences, but can be
problematic in cases where structural variation obscures spectral variation that is detectable at the leaf
level [57]. However, leaf level variation in functional attributes has shown to be detectable remotely
and distinguishable from canopy structure [17,58,59]. Environmental variation and ontogenetic
changes in plants present additional complications for extending classifications to air- or spaceborne
platforms. Biological taxa occurring in natural systems vary in size and life stage, and show differential
expression of phenotypes based on the environment. However, spectral variation due to environment
or phenology may itself be diagnostic of taxonomic differences and thus be informative. In effect, this
would greatly increase the dimensionality of the data available, since it might incorporate spectral
variation by developmental stage, climate/weather and so forth.

Our analyses also point to the need for continued development of qualitative methods to integrate
multiple high-dimensional data sets. We reduced the dimensionality of spectral data using PCO
prior to our analyses of phylogenetic signal. Although there are precedents to this approach [60,61],
theoretical and simulation studies show that the evolutionary analysis of principal components can
yield biased results under some conditions [62]. Unfortunately, no current phylogenetic models can
efficiently analyze high-dimensional datasets such as spectral data despite recent methodological
advances [63], pointing to an important future research direction.

5. Conclusions

The challenge of monitoring dynamic changes in the Earth’s biodiversity during a time of rapid
global environmental change is one that cannot be addressed using traditional ground-based methods
alone. Regions of the planet where habitat loss is most accelerated and diversity is highest may not
be accessible in vivo or feasible to assess on an ongoing basis. Our work shows that optical data,
particularly high-spectral resolution observations, provide important information relevant not only for
characterizing plant functional attributes, but also for gleaning phylogenetic and genetic information,
all of which can be harnessed for monitoring global changes in biodiversity. Despite the challenges
of shifting from leaf-level spectroscopy to remote sensing of the biota using imaging spectroscopy,
we show that high spectral resolution spectroscopic methods hold promise for contributing to a
dynamic global biodiversity observatory (sensu [5]) for continuous monitoring of the diversity in the
Earth’s flora.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/3/221, Table S1.
Analysis of variance for the Quercus oleoides experiment. Populations are treated as the main factor with each
spectral PLS component as a response variable. F ratios indicate the variation in component scores among
populations relative to variation within populations. Components are shown in bold if P values are less than 0.05,
indicating a significant population effect; Table S2. Phylogenetic signal as given by Blomberg’s K of components
of the PCO analysis. Observed values of Blomberg’s K are given relative to the mean and SD of the null model,
computed using a tip shuffling algorithm. P values less than 0.05, shown in bold, indicate that the observed
K value is significantly higher than expected by chance, such that the component shows significant phylogenetic
signal. K values around 1 are consistent with a Brownian motion (BM) model of evolution, and the expected
mean of the BM simulation is always 1.0. The SD of the expected K value with Brownian motion simulation is
also shown for each component; Table S3. Phylogenetic signal as given by Blomberg’s K of traits predicted from
spectral data. Headers are the same as in Table S2; Table S4. Analysis of variance for leaf type. Leaf type is treated
as the main factor with each spectral PLS component as a response variable. F ratios indicate the variation in
component scores among populations relative to variation within populations. Components are shown in bold if
P values are less than 0.05, indicating a significant population effect; Figure S1. Kappa scores for PLS-DA model
fit as a function of the number of components included in the validation model using full spectral data or traits
for (A) population classification within Quercus oleoides; (B) oak species classification; (C) oak clade classification;
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and (D) leaf type classification. Shown are mean and ˘2SD of the kappa values for 300 model jackknife iterations
(Leave group out cross validation, LGOCV) for each number of components.
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